Chest Ultrasound Anatomy and Abnormalities Bronchoscopy and Pleural Boot Camp

Chat Box: What's your ultrasound experience so far?

- No formal training
- On the job
- Formal curriculum
- Formal certification

July 15th, 2021

Rajeev Swarup, MD

Assistant Professor

Michigan Medicine

Ann Arbor VA Health System

ICHIGAN N

No Disclosures

Goals

- Briefly review ultrasound basics
- Introduce lung ultrasound
- Define
 - Probe types for lung ultrasound
 - Scanning zones
 - Anatomy
 - Artifacts/Findings

Point of Care Questions:

- 1. Is the peripheral lung parenchyma normal?
- 2. Is there a pneumothorax?
- 3. Is there a pleural effusion?

Best of ATS video lecture series. US basics. Shailaja J Hatden MD, Amy Morris M.D. University of Washington

MICHIGAN MEDICINE

UNIVERSITY OF MICHIGAN

Physics of ultrasound

Physics of Ultrasound

Audible sound waves	20-20,000 Hz
Infrasound waves	<20 Hz
Ultrasound waves	>20,000 Hz
Medical ultrasound transducers	1-20 MHz

Introduction to Lung Ultrasound

- Much of lung US is determined on artifacts
- Normal aerated lung will scatter sound waves
- Can only detect pathology that reaches the lung periphery
- Superior to CXR

Lung ultrasound involves the interpretation of ultrasound artifacts

Before you scan

- Choose your probe
- Choose your exam present
- Orient yourself to the indicator
- Position your equipment and the patient
- Adjust your gain to make black structures (anechoic) structures look black
- Set depth

PHILIPS

MICHIGAN MEDICINE

UNIVERSITY OF MICHIGAN

Which probe would you use?

Terminology

Pulmonary and Critical Care Medicine

MICHIGAN MEDICINE

Modes

- 2D or B mode
- M mode (motion)
- Color/doppler

ICINE

Image optimization: Gain

Pulmonary and Critical Care Medicine

MICHIGAN MEDICINE

UNIVERSITY OF MICHIGAN

Image Optimization - Depth

MICHIGAN MEDICINE UNIVERSITY OF MICHIGAN

Holding the probe and identifying directions

- Rotate
 - Clockwise or counterclock wise
- Rock
 - Forward/back
- Tilt
 - Right/Left

Scanning Zones –Volpicelli's zones

PSL –parasternal line AAL-anterior axillary line PAL- posterior axillary line

Scanning Zones 6 point Lichenstein 2014

Anatomy

MICHIGAN MEDICINE

UNIVERSITY OF MICHIGAN

Lung sliding

- Hyperechoic pleural line moves with lung movement
- "Ants marching"
- Rules out a pneumothorax in the scanned area 100%
- M-Mode "seashore sign"

M-Mode

Mosier, Jarrod & Martin, J.A. & Andrus, Phillip & Clinton, MD & Demla, Vishal & Dinh, MD & Saul, MD & RDMS, Christopher &

and the second s

A lines

Horizontal

A lines throughoutnormal CXR

A-lines are a classic reverberation artifact, seen as bright horizontal lines deep to the pleural line.

Normal Lung

Anatomy

MICHIGAN MEDICINE

UNIVERSITY OF MICHIGAN

Lung pulse

- Synchronous movement with cardiac cycle
- Equivalent to lung sliding
- Could see this sign in a mainstem intubation

B-lines

Thickened septa

- Suggests pathology (interstitial syndrome)
- < 3 per scanning field normal
- Move with lung sliding
- Absent in pneumothorax
- "Lung Rockets"
- Ring down artifact
- Start at pleural line
- Move with respiration

Anatomy

Pulmonary and Critical Care Medicine

Kazerooni E A AJR 2001;177:501-519

MICHIGAN MEDICINE

UNIVERSITY OF MICHIGAN

B- Lines and confluent lines

LITFL ultrasound library

Pulmonary and Critical Care Medicine

MICHIGAN MEDICINE

Do not confuse with Z-lines

- Not B- Lines
- Normal finding
- Do not obliterate A lines
- Taper
- Arise from the pleural line
- Only 2-4 cm in depth
- No movement with lung sliding

INE

Absence of lung sliding

Chat box:

What might this represent?

Pneumothorax

- US is primarily a rule out rest (lung sliding present) parietal and visceral pleural apposition
- A lines **do not** rule out a pneumothorax
- B lines **do** rule out a pneumothorax. Must have apposition for B lines
- Lung pulse rules out a pneumothorax (apposition)
- Lung point rules in a pneumothorax if can be found

2INF

Pneumothorax

Pneumothorax distribution Erect

Lung point

Lung Pt

Moreno-Aguilar, German, and Daniel Lichtenstein. 'Lung Ultrasound In The Critically III (LUCI) And The Lung Point: A Sign Specific To Pneumothorax Which Cannot Be Mimicked'. *Critical Care* 19.1 (2015): n. pag. Web.

Case courtesy of Dr Andrew Dixon, Radiopaedia.org, rID: 45149

Mirror image artifact

Normal finding

Rules out a pleural effusion

Will not be able to see the spine

US waves encounter a highly reflective surface that is adjacent to air

Lung Consolidation

- Hepatization
- Dynamic airbronchogra ms
- Static airbronchogra ms

Pleural effusions

MICHIGAN MEDICINE

VERSITY OF MICHIGAN

emj.bmj.com

Ultrasound.guide Aorta Spine Sign

Pleural effusions Quad and Sinusoid sign

Curtain sign

Normal finding

No pleural effusion

Jelly fish sign

Loculated pleural effusion

Plankton sign

Shred sign

BLUE-protocol – immediate diagnosis of the main causes of acute respiratory failure

Chest 2008;134:117-125

CHIGAN M

UNIVERSITY OF MICHIGAN

CINF

Thank you!

Supplement

- Instructional videos
- Suggested reading
- Common signs and terminology quick sheet

