

EBUS-TBNA

A. Rolando Peralta MD

Pulmonary and Critical Care Medicine Interventional Pulmonology Henry Ford Hospital – Detroit aperalt2@hfhs.org

Disclosures

• None

- Provide an introduction to:
 - The anatomy of the EBUS-TBNA bronchoscope
 - Techniques of sampling
 - Indications, contraindications and complications

- Provide an **introduction** to:
 - The anatomy of the EBUS-TBNA bronchoscope
 - Techniques of sampling
 - Indications, contraindications and complications

- Provide an introduction to:
 - The anatomy of the EBUS-TBNA bronchoscope
 - Techniques of sampling
 - Indications, contraindications and complications

Endobronchial Ultrasound

- Endobronchial Ultrasound (EBUS) is a bronchoscopic technique that uses ultrasound to visualize structures within and around the airway wall as well as the lung.
- EBUS-TBNA (Endobronchial ultrasound transbronchial needle aspiration)
 - Minimally-invasive procedure
 - Performed on an outpatient basis
 - May be performed under moderate sedation or general anesthesia

Endobronchial Ultrasound

Convex

-Ε C 100

Radial

Yasufuku, K. et al. Journal of Thoracic Oncology, Volume 2, Issue 10, 2007, 970–97 Kurimoto, N. J Med Ultrasound 2009;17(1):31–439

Endobronchial Ultrasound

20

- MH2

Radial

Yasufuku, K. et al. Journal of Thoracic Oncology, Volume 2, Issue 10, 2007, 970–97 Image courtesy of Olympus Medical Corporation

Length 600mm OD 6.9mm Working channel 2.2mm **Direction of view 35 degree** Depth of Field 2-50mm

Diagnostic bronchoscope BF-H190 WC 2.0 mm Length 600 mm Direction of View 0° Forward Viewing OD: 5.5 mm Distal End Max Flexion: 210° Max Retroflexion: 130° Rotation: 120°

Retroflexion 90 degrees

- Provide an introduction to:
 - The anatomy of the EBUS-TBNA bronchoscope
 - Techniques of sampling
 - Indications, contraindications and complications

Lymph Node

Lymph Node Stations

Supraclavicular zone

Supraclavicular Zone (1R and 1L)

- Upper border
 - Lower margin of the cricoid cartilage
- Lower border
 - Clavicles bilaterally and in the midline, the upper border of the manubrium
- Midline serves as the border between 1R and 1L

Supraclavicular Zone (1R and 1L)

Endobronchial ultrasound : an atlas and practical guide (0-387-09436-9, 978-0-387-09436-6), Ernst, Armin. Start Journal/Book Specific Information Springer, 2009

Superior Mediastinal Zone (2R and 2L)

Upper border

- Apex of the lung and pleural space, upper border of the manubrium (midline)
- Lower border
 2R: Intersection of the caudal margin of the
- innominate v. with the trachea 2L: Superior border of the
- aortic
- arch

The left lateral wall of the trachea (not the midline) serves as the boundary between stations 2R and 2L

Ahmed H. El-Sherief; Charles T. Lau; Carol C. Wu; Richard L. Drake; Gerald F. Abbott; Thomas W. Rice; *RadioGraphics* **2014**, 34, 1680-1691. DOI: 10.1148/rg.346130097

Superior Mediastinal Zone (2R and 2L)

Endobronchial ultrasound : an atlas and practical guide (0-387-09436-9, 978-0-387-09436-6), Ernst, Armin. Start Journal/Book Specific Information Springer, 2009

Superior Mediastinal Zone (3A and 3P)

- Upper border
 - Apex of chest
- Lower border
 - Level of carina
- Anterior border
 - Posterior aspect of sternum
- Posterior border (3a)
 - R: anterior border of SVC
 - L: L carotid artery

Ahmed H. El-Sherief; Charles T. Lau; Carol C. Wu; Richard L. Drake; Gerald F. Abbott; Thomas W. Rice; *RadioGraphics* **2014**, 34, 1680-1691. DOI: 10.1148/rg.346130097

Superior Mediastinal Zone (4R and 4L)

Upper border

- 4R: Intersection of the caudal margin of the innominate v. with the trachea
- 4L: Superior border of the aortic arch

Lower border

- 4R: Lower border of the azygos
- 4L: Upper rim of the Lt main PA

The left lateral border of the trachea (not the midline) serves as the boundary between stations 4R and 4L

Ahmed H. El-Sherief; Charles T. Lau; Carol C. Wu; Richard L. Drake; Gerald F. Abbott; Thomas W. Rice; *RadioGraphics* **2014**, 34, 1680-1691. DOI: 10.1148/rg.346130097

Superior Mediastinal Zone (4R and 4L)

Endobronchial ultrasound : an atlas and practical guide (0-387-09436-9, 978-0-387-09436-6), Ernst, Armin. Start Journal/Book Specific Information Springer, 2009

Aortic Nodes (5 and 6)

5 Aortopulmonary

- Lateral to the ligamentum arteriosum
- Upper border: Lower border of the aortic arch
- Lower border: Upper rim of the left main pulmonary artery

6 Paraaortic

- Anterior and lateral to the ascending aorta and aortic arch
- Upper border: Line tangential to the upper border of the aortic arch
- Lower border: Lower border of the aortic arch

Inferior Mediastinal (Subcarinal 7, Lower Zone 8 & 9)

Ahmed H. El-Sherief; Charles T. Lau; Carol C. Wu; Richard L. Drake; Gerald F. Abbott; Thomas W. Rice; *RadioGraphics* **2014**, 34, 1680-1691. DOI: 10.1148/rg.346130097 **Endobronchial ultrasound : an atlas and practical guide (0-387-09436-9, 978-0-387-09436-6)**, Ernst, Armin. Start Journal/Book Specific Information Springer, 2009

Inferior Mediastinal (Subcarinal 7, Lower Zone 8 & 9)

Ahmed H. El-Sherief; Charles T. Lau; Carol C. Wu; Richard L. Drake; Gerald F. Abbott; Thomas W. Rice; *RadioGraphics* **2014**, 34, 1680-1691. DOI: 10.1148/rg.346130097 **Endobronchial ultrasound : an atlas and practical guide (0-387-09436-9, 978-0-387-09436-6)**, Ernst, Armin. Start Journal/Book Specific Information Springer, 2009

8 Paraesophageal

- Adjacent to the wall of the esophagus
- Upper border
 - R: Lower border of the bronchus intermedius
 - L: Upper border of the lower lobe bronchus
- Lower border: Diaphragm

9 Pulmonary Ligament Nodes

- Nodes within the pulmonary ligament
- Upper border: Inferior pulmonary vein
- Lower border: Diaphragm

Hilar / Interlobar Zone (10, 11)

10 Hilar

- Includes nodes immediately adjacent to the mainstem br and hilar vessels
- Upper border
 - R: Lower rim of azygos
 - L: Upper rim of the Lt main PA
- Lower border: Interlobar region

11 Interlobar Zone

- Between the origin of the lobar bronchi
- 11s: Between upper lobe bronchus and bronchus intermedius
- 11: Between the middle and lower lobe bronchi

Hilar / Interlobar Zone (10, 11)

Endobronchial ultrasound : an atlas and practical guide (0-387-09436-9, 978-0-387-09436-6), Ernst, Armin. Start Journal/Book Specific Information Springer, 2009

Hilar / Interlobar Zone (10, 11)

Endobronchial ultrasound : an atlas and practical guide (0-387-09436-9, 978-0-387-09436-6), Ernst, Armin. Start Journal/Book Specific Information Springer, 2009

Peripheral Zone (12, 13, 14)

• 12

• Adjacent to lobar bronchi

• 13

 Adjacent to segmental bronchi

Endobronchial ultrasound : an atlas and practical guide (0-387-09436-9, 978-0-387-09436-6), Ernst, Armin. Start Journal/Book Specific Information Springer, 2009

N0 vs N1 vs N2 vs N3 Comparisons Adjusted for Histology (adeno vs others), Sex, Age 60+, and Region. (Cox PH regression on R0 cases)

comparison	HR	P
N1 vs N0	2.13	<0.0001
N2 vs N1	1.65	< 0.0001
N3 vs N2	1.56	.0012

comparison	HR	P
N1 vs N0	2.10	<0.0001
NZ vs N1	1.63	<0.0001
N3 vs N2	1.66	<0.0001

EBUS-TBNA – Accessible Stations

Insertion of the needle into the scope (done in neutral position)

Locking and Setting the sheath

Sheath outside the working channel

Set the depth of the needle

Needle depth set at 2cm

Needle at full depth

What needle and how many passes?

- 21 vs. 22 gauge needle
 - Aquire database (1235 patients)
 - No difference in adequacy or diagnostic yield
- Number of passes
 - Three passes maximized diagnostic yield for malignancy
 - Sensitivity 95%, NPV 97%
 - For molecular markers \rightarrow Minimum 4 passes

- Provide an introduction to:
 - The anatomy of the EBUS-TBNA bronchoscope
 - Techniques of sampling
 - Indications, contraindications and complications

EBUS-TBNA Indications

- Diagnosis, staging and restaging of NSCLC
- Sampling of:
 - Mediastinal / Hilar lymphadenopathy of unknown etiology
 - Sensitivity 92% -- Specificity 100% (1)
 - Mediastinal masses
 - Bronchogenic cysts
 - Pulmonary lesions adjacent to the airway

EBUS-TBNA Contraindications

Same as contraindications to bronchoscopy and conventional TBNA

- Inability to tolerate sedation or anesthesia
- High risk for pulmonary and cardiac decompensation
 - Hypoxemia
 - Recent cardiac event
 - Uncontrolled CHF
 - Life-threatening arrhyt
 - Hemodynamic instabil
 - AE o Asthma
 - AE o COPD

- Thrombocytopenia
 Contraindications are all relative
 Onscape cervical spine
 - Limited motion of TM joint

Inability to obtain consent

Therapeutic anticoagulation

• High risk for bleeding

• Antiplatelet agents

EBUS-TBNA Complications

Table 2—Com	plications	Following	EBUS-TBNA
-------------	------------	-----------	-----------

Outcome	No. Events $(N = 1,317)$	Complication Rate, % (95% CI)
Any complication within 24 h	19	1.44 (0.87-2.24)
Bleeding requiring intervention ^a	3	0.2 (0.05-0.7)
Pneumothorax	7	0.53 (0.21-1.1)
Clinically significant airway injury	1	0.1(0.002-0.4)
Sustained hypoxia	4	0.3 (0.08-0.8)
Hypotension	1	0.1 (0.002-0.4)
Cardiac arrest	0	
Arrhythmia	0	
Respiratory failure within 24 h	3	$0.23\ (0.05-0.7)$

The only variable that affected the occurrence of complication was TBBx.

Thank you!

A. Rolando Peralta MD Director, Bronchoscopy Services Associate Director, Lung Cancer Screening Pulmonary and Critical Care Medicine Interventional Pulmonology Henry Ford Hospital – Detroit

HFH-IP 💓 @hfhipulm

1. In patients undergoing EBUS-TBNA, we suggest that either moderate or deep sedation is an acceptable approach(Grade 2C).

2. In patients undergoing EBUS-TBNA, we suggest that ultrasonographic features can be used to predict malignant and benign diagnoses, but tissue samples should still be obtained to confirm a diagnosis(Ungraded Consensus-Based Statement).

3. In patients undergoing EBUS-TBNA, we suggest that tissue sampling may be performed either with or without suction(Ungraded Consensus-Based Statement).

4. In patients undergoing EBUS-TBNA, we recommend that the use of either a 21- or 22-gaugeneedle is an acceptable option(Grade 1C).

5. In the absence of rapid on-site evaluation (ROSE) inpatients suspected of having lung cancer and undergoing EBUS-TBNA for diagnosis, we suggest that a minimum of 3 separate needle passes be performed per sampling site(Ungraded Consensus-Based Statement)

6. In patients undergoing EBUS-TBNA for diagnostic evaluation, we recommend that tissue sampling can be performed with or without rapid on-site evaluation(Grade 1C).

7. In patients undergoing EBUS-TBNA for the diagnosis and/or staging of suspected or known on-small cell lung cancer, we recommend that additional samples, beyond those needed to establish the diagnosis, be obtained for molecular analysis(Grade 1C).

8. In training EBUS-TBNA operators, we suggest that low- or high-fidelity simulation be incorporated in training(Grade 2C).

9. In evaluating EBUS-TBNA operators, we suggest that validated EBUS skills assessment tests be used to objectively assess skill level(Ungraded Consensus-Based Statement).

10. In patients with suspected sarcoidosis with mediastinal and/or hilar adenopathy, we recommend that EBUS-TBNA be used for diagnosis(Grade 1C).

11. In patients with suspected tuberculosis with mediastinal and/or hilar adenopathy who require lymph node sampling, we recommend that EBUS-TBNA be used for diagnosis(Grade 1C).

12. In patients with suspected lymphoma, we suggest that EBUS-TBNA is an acceptable initial, minimally invasive diagnostic test(Ungraded Consensus-Based Statement)

- Which of the following factors are related to the diagnostic yield of EBUS-TBNA?
- a) Hospital EBUS-TBNA procedural volume
- b) Lymph node size
- c) Number of lymph nodes sampled
- d) Positive PET scan
- e) Smoking status
- f) All of the above

- Which of the following factors are related to the diagnostic yield of EBUS-TBNA?
- a) Hospital EBUS-TBNA procedural volume
- b) Lymph node size
- c) Number of lymph nodes sampled
- d) Positive PET scan
- e) Smoking status
- f) All of the above

68yo gentleman with 50PYH smoking has a RLL 3.8cm mass on Chest CT. Follow up PET-CT shows FDG uptake in RLL mass and the additional findings above, no other lesions found. Which of the following is correct about mediastinal staging of lung cancer?

- a) Combination EBUS-TBNA and EUS-FNA has similar diagnostic accuracy than EBUS-TBNA alone
- b) Diagnostic yield of EBUS-TBNA and video-assisted mediastinoscopy for lung cancer staging is similar
- c) False positive rate of PET-CT for mediastinal lymph nodes is <5%
- d) Sampling of mediastinal lymph nodes >1 cm is not needed

68yo gentleman with 50PYH smoking has a RLL 3.8cm mass on Chest CT. Follow up PET-CT shows FDG uptake in RLL mass and the additional findings above, no other lesions found. Which of the following is correct about mediastinal staging of lung cancer?

- a) Combination EBUS-TBNA and EUS-FNA has similar diagnostic accuracy than EBUS-TBNA alone
- b) Diagnostic yield of EBUS-TBNA and video-assisted mediastinoscopy for lung cancer staging is similar
- False positive rate of PET-CT for mediastinal lymph nodes is <5%
- d) Sampling of mediastinal lymph nodes >1 cm is not needed

A 74yo lady is referred to you for bronchoscopy after a lung cancer screening chest CT showed a RUL spiculated 2cm nodule. She has a 50PYH of cigarette smoking and liver cirrhosis due to NASH. Further imaging with a PET-CT showed FDG avidity in the RUL nodule and also in the right hilar and right paratracheal regions. You plan on performing EBUS-TBNA for mediastinal staging. Which of the following is true regarding EBUS-TBNA?

- a) A minimum of 5 passes are required when sampling mediastinal lymph nodes
- b) EBUS-TBNA has a complication rate of <1.5%
- c) EBUS-TBNA is contraindicated due to bleeding risk secondary to NASH cirrhosis
- d) Mediastinal staging is not needed in this case as the PET-CT shows FDG uptake in the lesion and lymph nodes

A 74yo lady is referred to you for bronchoscopy after a lung cancer screening chest CT showed a RUL spiculated 2cm nodule. She has a 50PYH of cigarette smoking and liver cirrhosis due to NASH. Further imaging with a PET-CT showed FDG avidity in the RUL nodule and also in the right hilar and right paratracheal regions. You plan on performing EBUS-TBNA for mediastinal staging. Which of the following is true regarding EBUS-TBNA?

- a) A minimum of 5 passes are required when sampling mediastinal lymph nodes
- b) EBUS-TBNA has a complication rate of <1.5%
- c) EBUS-TBNA is contraindicated due to bleeding risk secondary to NASH cirrhosis
- d) Mediastinal staging is not needed in this case as the PET-CT shows FDG uptake in the lesion and lymph nodes

