Chest Tubes: Placement and Management

Labib Debiane, MD, MS

Interventional Pulmonology
Director, Pleural Disease Program
Division of Pulmonary and Critical Care Medicine
Henry Ford Hospital
Assistant Professor of Medicine FTA
Wayne State University School of Medicine

Disclosure

- None
- Introduction
- Indications / Contraindications
- Chest tube types
- Techniques for insertion
- Chest drainage systems
- Management
- Complications
- Education
- Summary
- Chest tube placement = tube thoracostomy
- Common procedure in day-to-day medical practice
- Aims at draining the pleural cavity from air, fluid or blood
- Provides access to the pleural cavity to instill drugs (sclerosing agents, tPA/DNase, etc)
- Pneumothorax

3 cm at apex (ACCP)

- Large size spontaneous pneumothorax
- Clinically unstable pneumothorax (tension physiology)
- Recurrent or persistent pneumothorax
- Traumatic pneumothorax (iatrogenic and noniatrogenic)
- In patients on positive pressure ventilation (advisable)

$b=$ interpleural distance at level of the hilum - British Guidelines
- Pneumothorax with pneumomediastinum/pneumopericardium
- Hemothorax
- Hemo-pneumothorax
- Pleural effusion from esophageal rupture (gastric leak)
- Malignant pleural effusion (recurrent symptomatic)
- Treatment with sclerosing agents or post-thoracoscopic pleurodesis
- Recurrent pleural effusion (typically exudative and symptomatic)
- Parapneumonic effusions or empyema
- Chylothorax
- Postoperative care (eg. CABG, thoracotomy, or lobectomy)
- No absolute contraindications
- Relative contraindications include:
- Risk of bleeding
- Use of anticoagulants
- Bleeding diathesis
- Abnormal clotting profiles
- Overlying skin infection
- Transudative pleural effusions due to liver failure or heart failure (caution)

Types of Chest Tubes

- Numerous kinds
- Typically classified according to size and method of insertion
- Made of different materials
- Polyvinyl chloride, polyethylene, and silicone
- Can be straight, angled, or coiled at the end ("pig-tail")
- Can be tunneled or non-tunneled

Straight and Angled Chest Tubes

Covidien Thoracic Catheter

Pigtail Chest Tubes (non-locking)

Locking Pigtail Chest Tubes

Flexima ${ }^{T M}$ Drainage Catheters (Boston Scientific)

Cook Medical Dawson-Mueller

Multipurpose Drainage Catheter

ReSolve ${ }^{\circledR}$ Locking Drainage
Catheters
(Merit Medical)

Tunneled Pleural Catheter

HEALTH SYSTEM

PleurX ${ }^{\text {TM }}$ Pleural Catheter
(by BD)

Chest Tube Size

- Denoted in "French" (Fr)
- $1 \mathrm{Fr}=1 / 3 \mathrm{~mm}$
- Usually refers to the outer diameter
- Chest tube sizes usually range between $\mathbf{8 F}$ and 36 F
- Could be as large as 40F
- Small-bore chest tube vs large-bore chest tube
- No universal definition
- Threshold of ≤ 14 Fr vs < 20Fr
- IPC size is 15.5 Fr
- Some consider a group of medium-bore tubes (16-24F)
- Chest tube length: 30-40 cm

Chest Tube Size

- Laminar Flow: Hagen-Poiseuille Equation
- $\mathrm{Q}=$ Flow rate $(\Delta V / \Delta t)$
- $\Delta \mathrm{P}=$ pressure gradient
- $r=$ radius
- L = Length
- η = fluid viscosity
- Turbulent Flow:

POISEUILLE'S LAW $\mathrm{Q}=\frac{\Delta \mathrm{P}\left(\mathrm{r}^{4}\right) \pi}{\eta \mathrm{L}} 8$

- Difficult to characterize by an equation
- Flow is proportional to r^{5}

Tahmassebi, Amirhessam. Fluid Flow Through Carbon Nanotubes And Graphene Based Nanostructures. August 2015. Thesis for: Master of Science in Physics, Advisor: Alper Buldum
Labib Debiane, MD

There are 2 widely accepted methods:

- Blunt (surgical) dissection method
- Allow larger bore chest tubes
- Allow quick access
- Percutaneous method
(1) Seldinger technique
(2) Trocar technique (less favored)
- Tunneled Indwelling Pleural Catheter: seldinger + tunneling

Blunt (surgical) Dissection Method

Skin marking then Scrub and Drape

Lidocaine 1\% to anesthetize the skin and subcutaneous tract

Incision: 2-3 cm, parallel to rib

Labib Debiane, MD

Blunt Dissection

Curved clamp (Kelly/Hemostat) or curved scissors (Cooley)

https://csds.qld.edu.au/sdc/Provectus/Chest Drain/Insertion\%20of\%
20large\%20bore\%20chest\%20tube\%20by\%20blunt\%20dissection\%2 Oin\%20adults/unit-20022012053525881042/images/

Labib Debiane, MD

Tract Dilation and Pleural Cavity Inspection

http://neurocriticalcare.pbworks.com/w/page/48747193/Chest\ Tube
Labib Debiane, MD

Clamp chest tube at insertion end

 NEALTHSYSTEnInsert chest tube into the pleural cavity with the aid of the clamp

http://neurocriticalcare.pbworks.com/w/page/48747193/Chest\ Tube
Labib Debiane, MD

Watch of air condensation or fluid return

Labib Debiane, MD

Anchoring Suture(s)

Labib Debiane, MD

Various Types of Sutures

Purse String

Simple Interrupted

https://csds.qld.edu.au/sdc/Provectus/Chest Drain/Insertion\%20of\%20large\%20bore\%20chest \%20tube\%20by\%20blunt\%20dissection\%20in\%20adults/unit-20022012053525881042/images/

Labib Debiane, MD

Seldinger Technique

Technique

- 18-gauge needle passed into the pleural space
- Guidewire introduced into the pleural space and the needle withdrawn

Technique

- 0.5 cm incision
- Dilate the tract
- Advance chest tube over the guidewire then obturator and guidewire are removed
- Anchoring sutures

Pleural Drainage Systems

REMARK: Depth of water determines amount of negative pressure, NOT the reading on the vacuum regulator

Not needed with newer

Dry Suction systems
Atmospheric tube

Chest drainage

Adopted and modified from: Chevrollier G.S.et al (2018) Fundamentals of Drain Management. In: Palazzo F. (eds) Fundamentals of General Surgery. Springer, Cham

To help remove air from the pleural space, but not to exceed -20 cm suction,

Types of Chest Drainage Units

- Dry Suction/Dry Seal (A):
- Mechanical suction regulator
- Mechanical check-valve
- Dry Suction/Wet Seal (B):
- Mechanical suction regulator
- Water seal
- Wet Suction/wet Seal (C):
- Water column regulator
- Water seal

Thopaz ${ }^{\circledR}$ - Digital Drainage

Pull tubing away from Thopaz and dispose of according to ..

- Varies by provider to provider (not evidence based)
- Depends largely in disease process and provider's expertise
- Clamping test not necessary (due to associated risks)

Chest Tube Complications

- Insertional:
- Pain
- Misplacement
- Puncture of solid organ
- Puncture of intercostal artery
- Insertion on incorrect side
- Subcutaneous emphysema
- Bronchopleural fistula
- Positional:
- Drain failure (dislodgement, kinking, blocked) \rightarrow could lead to tension physiology
- Infection:
- Wound infection
- Pleural space infection
?
- Pain control
- Chest tube site care (skin exam, dressing change)
- Keep drain lower than level of the chest
- Absolute avoidance of "unattended" chest tube clamping
- Minimize length of suction tubing
- Travel with a portable suction when indicated
- Suction port should be OPEN to air during water seal drainage
- Encourage movement (avoid atelectasis)
- Educate patient/nurses
- Proper communication with teams

Labib Debiane, MD

Take Home Points

- Be familiar with indications/contraindication of tube thoracostomy
- Practice, practice, practice your technique
- Be actively involved in the management of patients with chest tubes
- Maintain excellent communication with primary teams, consultants, and nursing staffs

Thank You

